Extending Self-maps to Projective Space over Finite Fields

نویسنده

  • BJORN POONEN
چکیده

Using the closed point sieve, we extend to finite fields the following theorem proved by A. Bhatnagar and L. Szpiro over infinite fields: if X is a closed subscheme of P over a field, and φ : X → X satisfies φOX(1) ' OX(d) for some d ≥ 2, then there exists r ≥ 1 such that φ extends to a morphism P → P.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extending Self-maps to Projective Space

Using the closed point sieve, we extend to finite fields the following theorem proved by A. Bhatnagar and L. Szpiro over infinite fields: if X is a closed subscheme of P over a field, and φ : X → X satisfies φOX(1) ' OX(d) for some d ≥ 2, then there exists r ≥ 1 such that φ extends to a morphism P → P.

متن کامل

$PI$-extending modules via nontrivial complex bundles and Abelian endomorphism rings

A module is said to be $PI$-extending provided that every projection invariant submodule is essential in a direct summand of the module. In this paper, we focus on direct summands and indecomposable decompositions of $PI$-extending modules. To this end, we provide several counter examples including the tangent bundles of complex spheres of dimensions bigger than or equal to 5 and certain hyper ...

متن کامل

Computing in Picard groups of projective curves over finite fields

We give algorithms for computing with divisors on projective curves over finite fields, and with their Jacobians, using the algorithmic representation of projective curves developed by Khuri-Makdisi. We show that various desirable operations can be performed efficiently in this setting: decomposing divisors into prime divisors; computing pull-backs and push-forwards of divisors under finite mor...

متن کامل

Projective maximal submodules of extending regular modules

We show  that a projective maximal submodule of afinitely generated, regular, extending module is a directsummand. Hence, every finitely generated, regular, extendingmodule with projective maximal submodules is semisimple. As aconsequence, we observe that every regular, hereditary, extendingmodule is semisimple. This generalizes and simplifies a result of  Dung and   Smith. As another consequen...

متن کامل

Polynomial maps over finite fields and residual finiteness of mapping tori of group endomorphisms

We prove that every mapping torus of any free group endomorphism is residually finite. We show how to use a not yet published result of E. Hrushovski to extend our result to arbitrary linear groups. The proof uses algebraic self-maps of affine spaces over finite fields. In particular, we prove that when such a map is dominant, the set of its fixed closed scheme points is Zariski dense in the af...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012